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The research reported in this commufniation deals With

the properties of non-linear travelling and standing plasma

waves in homogeneous, ionized cold streams.

For the travelling nonliznear plasma waves it is possible

to obtain direct and simple expressions (provided el-ctronit

Overtaking does not 6ccur), which relate the charge density

to the true stream coordinate. This direct method is,un-

fortunately, not in general applicable to the pratically

important case of standing plasma waves a sYmetric space

charge wave pair in the linear theory. There exists one excep-

tion, however, when the direct method can be applied to

standing piasma waves, viz. the very special case of stream

plasma reson ce, In all other cases, provided there it no

electronic overtaking, the indirect, but nevertheless exact,

methods of Olving [i] will have to be used.

The non-linear maximum charge peaks, or charge bunches,

are shown to be rather similar for the physically Otherwise

quite different travelling and standing non-linear waves.

Both rapidly become very rich in harmonics Es overtaking is

approached. if such a stream runs through a multi-resonant

system, for example the solar corona, an ionized anisotropic

medium, or a series of cavities in a microwave device, high
harmonics may be excited in the system. Whether a net harmo-

nic radiation actually takes place or not from the inter-

aotng mediu, is a problem of its own, diffioult an boynd

the aims of the present investigation.



2. Inttroduction.

We assume that the ions and electrons of the infinitely

wide, homogeneous and cold stream haVe a miean ari equal den-

sity N 6And a. drift velocity V., Along the z-axis of the sys-

tern. Furthermore, we neglect the oscillations of the ions and

assume that the elictfrons make longitudinal oscillations only.

this Means that only electronic plasmag oscillationts are eXCi-

ted in the streamaing mediume

We next inttroduce the following notations, vis.

w) p (in~.... the angular electronic plasma.

0 frequency, j

pu-Ne. (N 0 +N.Jeup+p_, (2)

Where N Ais the differential electron density SAd p.- the
differential or ac spac charg density

V-v v , _ (3)

where V, is the differential -or ac -Velocity (in the x__

direction),

z~o+ Z-, (4)

where z_ is the displacement of the electron planes from

the equil itibrium position z 0 ,if the unperturbed ec-e

tro plnein question left the 0 level at ti0m0 t w 0),

E o x ,.inceE z.0, (W

where X_ io the axial ac electric field stroegth.

As long as s_ is A single valued functin, te when



there is no ele-toftic overtaking, the electronic V61Z 1 -fkw

tion bomeas

The baseic relation (6) holds for all non.-linear *oill1-ations,

when *,4 is single valued, which we assume to be the cse in
what follows.

Sincee we haVe an infinitely wi-de stress,

0 0

The equation of motion,

d

therefore, by (8), immediately yields

dt2

The electrons thug, even in the non-linear case, oscillate
harmonically around their undisturbed position to (. v 0 0
with the plasma frequency ta /2i, a fact already pointed out

Ad discussed by OlVing i)

Bly (1*) re. (to) can 4aso be 'written

2
+ 2 . (loCs)

da ow-

where

k 2  to 2 /V 2 0 (2XA ) 2 , i
p -p -9

a0d X is the pla;~ aeegho h temn ei
p sovvlnt rtesraa



The amplitude of the plasma oscillations obviously varies

from plane to plane and can be regarded as a ftbction Of

t - ;o, [I], vhich is a constant for any given olictron (or

plane of eloctrons).

Rel. (7) immediatily yields

- + awr 6

as it should be (the total axial ac current must be xero), i.e.

i Po (i)

wvhere i,, is the (axial) ac convection current density.

Finally the equation of cohtinuity,

. 8i.* (7-)

by (13) requires that

8z " p 8P"" , (1+)

whioh meanm that

* . - + • 1 (16)Po 8 is " T +,: az-.+- to , '

Since overtaking occurs when Ox /8 < 1 1, one notices that,

a expotod, p -. m, when it begins.



fte_ linear JlMalksikal) silaias

In order to facilitate Our discussion! Of the nont-linear

oscillationU w ill in this section briefly discuss two

characteristic, and naturally well known [2], lintear solu-.

tions, Vim, the "standing" jplasma waves and the "travelling*

plamam wavos.

-plasa (or stag* e c rEq~e.!wa.

If ye asume that an ideal, gridded velocity *odulation

gap is! inserted at 2~ 6 0 (in the following we neglect 3,,

and thus write all solutions in terms of 2),j that the strea

ming electrons have not been subject to perturbations of any
kind before reaching this gap, and that the at Velocity pro"
duced byteaeis(j, v sin wt, we obtain

V" * sin(mt m. mx) cos(kv a), (7
0

k sin(cat m- ms) sin(k x),

0

0 -D
N Coo (v

POW coot (zs) "1~k a). (ia s

-sin(%t _ 01m) os(k p x)],



We, notieta the convection current is zero at the gap, but

not so th, differential space charge density. in the steady

state, and relations (17) to (20) are steady State soluitions,

the velocity modulation produces Aft (normally small1) ac

space charge density in front of the gap. W. furthermore no-

ties from (20), that p/p0 becomes large for a very undesrdents6

stream, L.e. When wO/wp< «1. Overtaking thus rapidly occurs.

when the stream becomes underdense.

-f we have plasma resonance in the streamt, i.e. when
w ,relations 1)a~ (20) yield

j 2 -v fain(O t) + sin[wp(t -2z/vo)Jr
p 0

(22)

and
VO

(p/p )- 90 (t'jw~ - 2z/vc)J (23)

Theo at velocity now has two characteristically different

components, one a pure plasma oscillation independent of a,

and the other a travelling "plasma wave" with the phase

velocity v 0/2. The ac charge density only appears in the form

of such a plasma (or space charge) vave, M Te pure plasma

oscillation, *in(m. t), ao eXpected is not associated with
any fluctuations in p. In this respect there is little diffe.

renco between the stream and the stationary mqodtum. For a

*ore* deotailed discussion of the transition from a moving to

a stationary medium, which is outside the scope of the pre-

sent comunicati.on, the reader is re-fered to an earlier

paper by Rydbeck (9).

It in of interest og anot that pnOV appears in the

torn of a pure travelling wave, a fact we will later make



use of to obtain an exact, mad direct, solution of the density
varftIations.

Finally, if We locate the modulation plane at such a
position, that oos(k- z) it nov appears from (20), that

p
a density modulation, p a cos wt, at this plane (We
tacitly Assume that it is possible to perto m.- such a modula-
tiont), produces A velocity modulation V /V

(p* w p w) 666(k as) gin(wt c- axz)o k- r. > /2. 'Standing"l

plasma vaves thus cant be produced by pure velocity modulation,

by pure density modulation or by a suitable combination of
both. it should be noticed that the underdfes beam (W >> W -
is much more sensitive to velocity than to density modula-

tion. By properly combining velocity and density modulation
it is also possible to produce a Otravelling" plasia (or Opae

charge) Wave.

II Te"travellin1  plsa it r sae oha*I, wave.

if we produce the following velocity and density modula-.

tions at the modulation, plane a 6 0,

(~) - sin Ot, 24

MI-0

a 'travelli ng" plasma wave is produced in! the stream, viz.s

sin[wt- (Qk) , (26)

p 0 *p

;7 +i~ot (zk) (27)



my Vmo
±_.- kp os[t -( .± k,',,p], (28)

-- - * p~ .ilt*( p)*.(9

0

If the velocity and density modulatiOn are 1800 out of

phaseo, a slow plasma wave, sin;[wt- (c + E ) z], is produc~ed,

pp

and when they are in phase, a fast plaama wave, sin&+t-(x-rk )z].

It is important to note, that (for z > o) p./p 0 * , when

we have plasma resonance in the stream ta k0 ; compare also

(22) and (23)). The travelling plasma wave is of special in-

terest in this connection, since its non-linear proptrtios caft

be obtained exactly and direct, when overtaking does not occur,

as will be shown in the following chapter 4.



4. The-nonlinoar- trave-llinAn-lasma wa.&--

Since we are dealing with travelling vaves, we now assume
that all quantities can be expressed ad functions of the same
drift variable,

y a Wt - yz, sI~*E~) tc.olo

whrey iO c+ k- for the a-low plasma wave, and yuo .- k- for
p p

the fast plasma wave., it Should be added, that it tan be shown

from our previous relations in chapter 2, that Y Actually is
a constant [the electrons according to (1o) always osci-llate

harmonics.-ly with the anv lar frequency W 0around their unt-

distuarbed position). The phase velocity of the travellinge

plasma wave thus becomes

phase a V- +k p
0 php

By (30) we next obtain

(w yv dy (Eq. of motion) (32)

p Ba ~C0  ~(Poisson's E q.) (,

a"d

(0 - yV) 4Pa yp 91. (Eq. of continuity) (34)

if we introduc, the "reduced" velocity wave Agaction

V a W YV, (35)

where it Is to be noted that4

v.* P w + k o (35a)



(the upper sin stands for the lov wave), relation (34)

i mmdiately yields

P6

which c&& be vritton und.er tho alternate form

OP.. m. ' (v p- v ° Pod .  07')

Th X. of moti0on, (32), by (35) can be wrtten

v]Iw ohL 0~~

0  p. ( 6)
0  dy

or, fnally by (t6a), the nonl ear wave equation

I 2 w2p ay2vp-vwp ) 0 (37)

The lqnoar do (.e. a2) b nal) fOm of (40) bomes

(. * + ) o. P. , I<< )8)

vhOh he th solution

• A oin(%t %- yz) + B ao(ot . yo).p

o e on m olinear wave equtiontonf 2 ga es

O'9 rmthe Preai e v io. ral tinls . o (0) e



2-
d2. d 1 ye d, 12

dy Po - dy; PO0 Y O

fortunately (4.0) Can be solved exactly. MultiplidstiGIM

by dy/dy and integration twicbe yields

- Y, a - 'p0/pla Coe (p (5.3)

for the slo plsm vav,* and

(1 -, 4 po~/p 4nt ) 60 (p, (441)

for the fast plaima, wave. since y y must everywhere be
real, ap assumeal the form

1 pp
arc31 sin ( - o

po/pin2 Pc/p max (5.6)

or

ml,. P (5.7)

Relations (43) and (45.) can now be written

from which y direct can be plotted aLs a function of Ppp0

One ie--dltely infers from (4309, that

± (~' v)-1 2-- (+ i) when P a* Pot (4.8)pa



.1 2s

which demonstrates hov the PA a 0 positions is displaoed,
when the stream is heavily modulated. Furthermore one "oo,
that

+ y y) a*2(+ n *) hen p ap J~

and

±(y - yd) 4 /2 (+,n 2it), when P * min, so

i4e. the distance between the space charge maximum and mini-
mum is independent of p,6'pam= as it should be.

Ofto easily proves from our previous reain, that

m 2p

and b ()6) that

ve Pmax t

+ P (I - 1) *R- . (2

Relations (51) and-(52) show that the positive and negative
peak values of 3 respectivel L ar qa vnIn the non-a

linear a*e.

When overtakig occurs p -. qp, which thus taks place

when

+ v W - -vo T --- p
crit -p 0 *

It thus oppears that - vPh/vcnb*eadda esr
of the annlinearity. lthrmore one nlotice* as has Alroad
boon Pointed Out in a Previous section, that the critical gc
Velocity$ .i, toi extremely small for a very upderdeno*



It is especially interesting to note, that for the re-

sonant Stream (W & W) Vor-it is equal to V6/9 for the 4low

plasa Wave atid infinitely large for the fast plasma waVe,
which now transforms into a stationary plasma oocillation

(46e also chapter 3).

Furthermore it should be pointed out, that

~0 *VphI (condition for overtaking)

as might be expected.

Frinally it should be mentioned that, according to (8)
the displacement of the oscillating electron fplanes beocomes

+ 10-(1 ...~L)\ 2 (514)

The maximum displacements at overtaking thus are

^0 rit .0 -wC w

v., - Xput(34a)

whore X =V X /c and X Ls the vacuum wavelength.5 0 0 0
it is worth notingC from (52) that, even in the non-

linear case, p_ a 0 for the fast plasma wave, vhen W " Wi,
The corresponding value of 1z zri I then by (54a) -w c.

Finally one direct infers that, as it should be, (43a)f
(51) and (32) reduce to the linear expressions (27), (28),

and (26), when p max'~ / « 1.<
In order to dem411onstrate the nature of the non-liUnear

travelling plasma Waves, We have in Pigs. 1, 2 and 3 Plotted

P/o and~-)~O v ~/Iv_ as functions of- y y1 for

pnu/p U 1.1, 2.0, 10 and 100.0 If ye, to ta-ke a typical
Ojxample, assume that w/w a 5 (a relatively underdense stream),

those values, by (02) Correspond to IV I/vo a 0.0275,
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0.12950, 0.2250, AMd 042475 for the fast plama wave

(pe-sot * would correspond to ft,3 I/ 062500i at

which velocity overtaking begins). it appears from the three

curves that the non-linear waves rapidly become very rich

in higher harmonics. it is especially int6resting to note

the very intense charge bunehing vhih becomes possible

when vA approaches its critical value (in the present amoa

rical case %o/4). IX such a stream r-uns through a multi-

resonant system, for example the solar corona, an ionized

meditu in a plasma amplifier, or a series of cavities in a

micrwave device, very high harmonics may be excited.

whether a net harmonic radiation actually tamps place or not

from the interacting medium is a problem of its ow-n difta-

cult and beyond the aifs of the present report.



-.18..

5. Acaomoarisonwirth Ol~Vini 's smethod~of non-linearanalvsies.

I. he on-iner -travellini Elasoa wave.

Pollowing Olving's approach [D!, we noV write down the

eleotroit displacement for the fast plasma wvs, Viso

s .to A- Oso , t (x k) o . (,)

iy (16) this yields [see also (27)]

1 k- p s!n[wt ((L - k-)SoJ

Vhere it has to be remembered, that z % O + z.i By these two

relations p/po can successively be plotted as function of s,

or of y a wt - ( - kp)z for that nattor.

In this special date of a travelling plasma Wave, one

can, however, proceed in the following man r to obtain the

same direct relations as in the previous chapter 4. if we

Introduce

p - ), (57)

relation (56) can be written

ox.

.* t - ( - kZ) - a ,-(-) -aor--



-19-.

By (55) and (52) one obtain*

- A, (x ) k (i P )[ (60)

which immediately yields

y * arc sint(t) +. (0 -t2
Prax

whioh it identical with our previous relation (43a).

When ve have Standing plasma Waves in the system this

stmple transformation is not possible, except when v a opt

as will be shown in the next section.

XX. Th *nonk-li ear stnd-ifaLD Lma &v*e.
Again following Olving we write

a., - - sin(Wt X.,) sin(k- ), (61)

.y (16) this yieldo [snee also (20)

- °1) ( )oo (k,%)

opo

(62)

where it n is to be r eooesbred that s - o + s ,re

ftrthermore have [see also (18) and (17))

my 0
-_ -.. k sin(wt- s) in(kso), (63)

y V " sin(wt m a.) cos(k £_). (64)
op

Ut appears from (62) and (61) tbt a " s can_ not



now be eliminated from(63)i that can be written in the to!-

!-owing forim, viz..

1.~~~ siot(ak) 0  0 Cwi- inut(mmkp)8@a,

0(6j

it w a w-, however, p/po becomes (see also (23))

p.

+ 2 sif(wt C 2aa
0

and we are left with one travelling wave aonl since, as has

been pointed out before, the stationary plasma oscillation

does not produce any Variations in p.i
Following the s-ame procedure as in section 1, ue obtain

wt - 2a-z marc sin(O) - m A, (67)

Since z can be written

V

, m V - co*'wt -(q p9)

- cos-6 t - ((x -~p so

we obtain, in the case of plasma resonance,

lw V
p 01

ZaEo~o 7aa cor 0 tt) (69a)

Relation (67) now yields thes final result, via.



y * t s, 2~ (x m

aare si() - (0 42P) 1 2+ (I 600wt

(70)

We notice, that fofr any given time, p/p0 now Varies (We Use-

l66t the space phase difference6) with a exact ly as th. non-.
linear pure travelling plasma wave., As a funcation of time,

for a given position z, the variation is different however.

This is due to the fact, that there is a pure plasmka onoillam-

tion superimposed on the electronic displacement, z. The

actual time variation, for fixed z, is easily obtained :from
Fig. 1, since onte only has to correct y for the sinusoida

displacement (I - P )00o wt. Methods of this type might

be applicable to the theory of zion-lintear frequency *IziWe
in streaming, ionized Media.

In order to compare the physical properties of the non-

linear travelling and stand,-Ing plasma waves, we have -in
Figs. 4, 5, 6, 7P 8, and 9 depicted the variation of p/p 0 ,

B/20, whereE 9umyv 2 k /e, and v /v as functions of.a for
- -o0 - 0 -p -- --- -- -

wta a 2xr, and (ot a n 2% + nt/2. Furthermore, to demonstrate

the importance and the effect of the electronic displacement,

s.., we have also, in the same Figs.!, plotted the former quan-

tities (dashed curves) uncorrected for a ,IV i.e. as functions

of k a 1. It is interesting to o that the displacement
_p -o, t ot-

,-neotos tend to sharpen th__e peaks , when wot a n 2 X9 and

broaden them when, wt a ni 2iR + X~/2. All curve* have been
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Plotted :for V. 1, a 0.0 and w/co L6 5,i~. o a fairlyOwo o
waderdento stream. Thit yields a Matimam p/p-value of almiost

0
two.

Finally, in order to mak, a more direct compairison

between th, charge bunching. Associated with the travyelliag

an-d stan ding pl-asma wavesj we have, in rig. 4, replotted also

the 010p46urve0 for pjma/~o * 2 r(,nd )/w v 6 3) of Fit . 1

it is particularly interesting to note, that the peak bunching

regione have almost the same shape for the two waves (wrhich are

Modulated nearly equally much), in spite of their Physically

quite diffeenat nature.
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